R.V. Ryzhov
DOI: https://doi.org/10.25689/NP.2024.270-291
Abstract
The paper presents an analysis of Russian and foreign literary sources covering the problem of determining the causes of well flooding. The main classifications of factors causing the increase in water production were studied. Literature search was conducted in electronic literature databases: Russian scientific electronic library elibrary.ru and foreign scientific knowledge bases researchgate.net and onepetro.org. Literature search date was limited to the recent 25 years. The analysis was conducted with increased focus on analytical approaches and methods enabling determination of the most likely causes of well flooding using field data and indirect evidence. The analysis revealed the main current approaches based on numerous variations of the construction and analysis of Chen and Hall plots and machine learning methods (highlighted in the latest publications). An integrated approach combining statistical-analytical methods and geological and reservoir simulation modeling is also widely presented.
References
2. Fattakhov I. G. Metodika identifikatsii putey obvodneniya neftyanykh skvazhin [Method for identification of water encroachment pathways to oil production wells]. Neftegazovoye Delo [Petroleum Engineering]. 2011, No. 3, pp. 154-159. (in Russian)
3. Ridnova T.V., Eliseeva M.I. Otsenka prichin obvodneniya skvazhin na beregovom mestorozhdenii [Evaluation of the causes for well flooding in an onshore field]. Mirny: Sputnik+ Publ., 2022, pp. 356-357. (in Russian)
4. Krasnov I.I., Vaganov E.V., Inyakina E.I. Diagnostika istochnikov vodopritoka i pespektivy tekhnologiy ogranicheniya proryva vody v skvazhiny [Diagnostics of water inflow sources and prospects for water shutoff technologies]. Neft i Gaz: Opyt i Innovatsii [Petroleum and gas: Experience and Innovation]. 2019, Vol. 3, No. 1, pp. 20-34. (in Russian)
5. Bolshakov Yu.Ya., Neelova E.Yu., Salova K.V. O prichinakh bystrogo obvodneniya dobyvayushchikh skvazhin na Zapadno-Kochevnenskom mestorozhdenii [Causes of rapid flooding of production wells of Zapadno-Kochevnenskoe field]. Almetyevsk: Almetyevsk State Oil Institute, 2020, pp. 43-47, EDN ANHHLC. (in Russian)
6. Ovchinnikov V.P., Saltykov V.V., Rozhkova O.V. Possible causes of premature flooding of inclined wells with high zenith angles. Burenie i Neft [Drilling and Oil]. 2018, No. 10, pp. 56-59, EDN YBDPFJ. (in Russian)
7. Abdullin R.N., Rakhmatullina A.R. An example of practical application of information on fracturing according to the well logging data complex and high-tech methods. Georesursy [Georesources], 20(3), Part 2, pp. 261-266. DOI: https://doi.org/10.18599/grs.2018.3.261-266. (in Russian)
8. Jin, L., & Wojtanowicz, A. K. (2010). Performance Analysis of Wells with Downhole Water Loop Installation for Water Coning Control. Journal of Canadian Petroleum Technology, 49(06), 38–45. doi:10.2118/138402-pa. (in English)
9. Kislitsyn A.A., Kuznetsov S.V., Podnebesnykh A.A., Granovsky A.M. Using neural networks for predicting the dynamics of water cut of horizontal wells. Vestnik Tyumenskogo Gosudarstvennogo Universiteta. Fiziko-matematicheskoe Modelirovanie. Neft, Gaz, Energetika [Bulletin of Tyumen State University. Physical and Mathematical Modeling. Oil, Gas, Energy]. 2019, Vol. 5, No. 4 (20), pp. 160-180. DOI: 10.21684/2411-7978-2019-5-4-160-180. (in Russian)
10. Qazvini Firouz, A., Nwangene, M., Hollinger, B., Kenny, M., & Vianzon, D. (2019). Practical Reservoir-Management Strategy to Optimize Waterflooded Pools with Minimum Capital Used. SPE Reservoir Evaluation & Engineering. doi:10.2118/189730-pa. (in English)
11. Bybee, K. (2011). Understanding First, Simulation Later. Journal of Petroleum Technology, 63(01), 59–60. doi:10.2118/0111-0059-jpt. (in English)
12. Mendoza, M., Cevallos, G., Molina, E., Piñeiros, S., Torres, W., Garrido, J., … Paladines, A. (2019). From Concept to Execution: A Successful Integrated Exploitation Philosophy. SPE Reservoir Characterisation and Simulation Conference and Exhibition. doi:10.2118/196734-ms. (in English)
13. Yudin, E. V., Chorniy, A. V., Churanova, N. Y., Soloviev, A. V., Khairullin, M. M., Sadreev, E. A., & Yushmanov, A. I. (2018). Sweep Efficiency Increasing of Fractured Oil-Wet Reservoirs: Case Study of Central Khoreyver Uplift Fields. SPE Russian Petroleum Technology Conference. doi:10.2118/191579-18rptc-ms. (in English)
14. Utomo, B., Al-Harbi, M., Razzak, S., Al-Hadyani, F. S., Hamid, S., Shaheen, T., … Boonjai, P. (2011). Innovative Water Shut Off Solution Combining Real Time Downhole Measurement and Analysis with Zonal Isolation Technologies for Horizontal Open Hole Producer in Ratawi Field - A Case History from Partitioned Zone. SPE Asia Pacific Oil and Gas Conference and Exhibition. doi:10.2118/145901-ms. (in English)
15. Kudryashova D.A. Use of probabilistic and statistical methods for determination of the sources of water flow in candidate wells for water shut-off works (on example of the Visean reservoir of the Perm region field). Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Geologiya. Neftegazovoe i Gornoe Delo [Perm Journal of Petroleum and Mining Engineering]. 2018, Vol. 17, No. 1, pp. 26-36. DOI 10.15593/2224-9923/2018.1.3. EDN YXHWLO. (in Russian)
16. Segun-Oki, H., & Eli, A. (2014). Material Balance Methods for Correcting Misallocation of Injected Water: Kadara field Case Study. SPE Nigeria Annual International Conference and Exhibition. doi:10.2118/172418-ms. (in English)
17. Wang, Y., Cheng, S., Zhang, K., He, Y., Feng, N., Qin, J., … Yu, H. (2018). A Comprehensive Work Flow to Characterize Waterflood-Induced Fractures by Integrating Real-Time Monitoring, Formation Test, and Dynamic Production Analysis Applied to Changqing Oil Field, China. SPE Reservoir Evaluation & Engineering. doi:10.2118/191370-pa. (in English)
18. He, Y., Cheng, S., Li, L., Mu, G., Zhang, T., Xu, H., … Yu, H. (2017). Waterflood Direction and Front Characterization With Four-Step Work Flow: A Case Study in Changqing Oil Field, China. SPE Reservoir Evaluation & Engineering, 20(03), 708–725. doi:10.2118/178053-pa. (in English)
19. Albertoni, A., & Lake, L. W. (2003). Inferring Interwell Connectivity Only From Well-Rate Fluctuations in Waterfloods. SPE Reservoir Evaluation & Engineering, 6(01), 6–16. doi:10.2118/83381-pa. (in English)
20. Chan, K. S. (1995). Water Control Diagnostic Plots. SPE Annual Technical Conference and Exhibition. doi:10.2118/30775-ms. (in English)
21. Ostapchuk D.A. Opredelenie prichin obvodneniya skvazhin s pomoshchyu grafikov VNF [Determination of well flooding causes using water-oil ratio curves]. Tyumen: Tyumen State Oil and Gas University, 2012, pp. 30-31. EDN TUCWLZ. (in Russian)
22. Ostapchuk D.A., Sintsov I.A. Usovershenstvovannyy diagnosticheskiy metod opredeleniya prichin obvodneniya skvazhin [Improved diagnostic method for determining the causes of well flooding. Ukhta: Ukhta State Technical University, 2015. – С. 115-122. – EDN ZTQVZD. (in Russian)
23. Babaev E.T. Obvodnenie Neftyanykh skvazhin [Oil Well Flooding]. Nizhnekamsk: Mir Knigi Publ., 2021, pp. 75-78. EDN YYKBZO. (in Russian)
24. Mekunye Francis, Paul Osaze Ogbeide Application of Chan Plot in Water Control Diagnostics for Field Optimization: Water/Gas Coning and Cusping /NIPES Journal of Science and Technology Research 3(4) 2019 pp. 227-232. doi:10.37933/nipes/3.4.2021.23. (in English)
25. Lushpeev V.A., Lushpeeva O.A., Tyukavkina O.V., Strelyaev V.I. Methods of determining the cause of well bores flooding. Georesursy [Georesources]. 2013, No. 2(52), pp. 44-47. – EDN RDKQLH. (in Russian)
26. Leontev D.S., Kleschenko I.I. Graficheskaya diagnostika prichin obvodneniya neftyanyh skvazhin [Graphical diagnostics of the causes of oil wells flooding]. Tyumen: Tyumen State Oil and Gas University, 2015, pp. 119-127. EDN UISUGH. (in Russian)
27. Leontev D.S., Kleshchenko I.I., Dolgikh E.F. Razrabotka programmnogo produkta "Diagnostika prichin obvodneniya neftyanykh i gazovykh skvazhin" [Development of software product "Diagnostics of oil and gas well flooding causes]. Tyumen: Tyumen State Oil and Gas University, 2015, pp. 102-112. EDN ULOLKX. (in Russian)
28. Leontev D.S., Kleshchenko I.I. Primenenie printsipa analiza riskom pri diagnostike prichin obvodneniya neftyanykh i gazovykh skvazhin [Application of the principle of risk analysis for diagnosing the causes of oil and gas well flooding]. Tyumen: Tyumen State Oil and Gas University, 2015, pp. 178-182. EDN VQUYDP. (in Russian)
29. Ustyugov A.S., Sutyagin V.V., Galiullin M.M. Express-diagnostics of definition of wells water-flooding causes based on field data analysis. Avtomatizatsiya, Telemekhanizatsiya i Svyaz V Neftyanoy Promyshlennosti [Automation, Telemetry and Communication in Petroleum Industry]. 2016, No. 8, pp. 4-9. EDN WGWIFV. (in Russian)
30. Garcia, C. A., Mukhanov, A., & Torres, H. (2019). Chan Plot Signature Identification as a Practical Machine Learning Classification Problem. International Petroleum Technology Conference. doi:10.2523/iptc-19143-ms. (in English)
31. Mett D.A., Petrova E.V. Determination of production wells watering sources based on Chen diagnostic graphs. The approach applicability limits. Geologiya, Geofizika i Razrabotka Neftyanykh i Gazovykh Mestorozhdeniy [Geology, Geophysics and Development of Oil and Gas Fields]. 2019. No. 7, pp. 65-70. DOI 10.30713/2413-5011-2019-7(331)-65-70. EDN MDOKTN. (in Russian)
32. Ilya, B., & Diana, S. (2015). Practical Aspects of Modeling of Water Coning in Carbonate Reservoirs. SPE Annual Caspian Technical Conference & Exhibition. doi:10.2118/177396-ms. (in English)
33. Izgec, B., & Kabir, C. S. (2009). Real-Time Performance Analysis of Water-Injection Wells. SPE Reservoir Evaluation & Engineering, 12(01), pp. 116–123. doi:10.2118/109876-pa. (in English)
34. Gogri, M. P., Rohleder, J., Kabir, S., Pranter, M., & Reza, Z. (2018). Prognosis for Safe Water-Disposal-Well Operations and Practices That Are Based on Reservoir Flow Modeling and Real-Time Performance Analysis. SPE Reservoir Evaluation & Engineering. doi:10.2118/187083-pa (in English)
35. Klimov-Kayanidi A.V., Alimkhanov R.T., Agureeva E.S., Sabitov R.M. Waterflood-induced fracture on the injection wells in low-permeability reservoir of Achimovskian sequence. Izvestiya VUZov. Neft i Gaz [Oil and Gas Studies]. 2018, No. 2(128), pp. 39-43. DOI 10.31660/0445-0108-2018-2-39-43. EDN XMGQNF. (in Russian)
36. Kulikov A.N., Magzyanov I.R., Shtinov V.A. Graph-analytical methodology of diagnosing of oil wells water-flooding. Neftepromyslovoe Delo [Petroleum Engineering]. 2012, No. 8, pp. 11-17. EDN PBRKER. (in Russian)
37. Kulikov A.N. Improvements in well selection procedures to perform the water shut off jobs and to restore the number of production wells. Neftepromyslovoe Delo [Petroleum Engineering]. 2012, No. 7, pp. 19-23. EDN PAKDTR. (in Russian)
38. Drofa P.M., Kolesnikova A.A., Murzakova A.F. et.al. Improving the efficiency of field development using automated analytical methods to assess the wells interference and the nature of watering. Professionalno o Nefti [Professionally about Oil]. 2023, Vol. 8, No. 3(29), pp. 127-139. DOI 10.51890/2587-7399-2023-8-3-127-139. – EDN TSZFEC. (in Russian)
Authors
R.V. Ryzhov, PhD Student, Chair of Development and Operation of Oil and Gas Fields, Almetyevsk State Technological University – Higher Petroleum School
2, Lenin Str., Almetyevsk, 423450, Russian Federation
E-mail: rom.ryzhoff2011@yandex.ru
For citation:
R.V. Ryzhov Klassifikatsiya i obzor metodov opredeleniya prichin obvodneniya skvazhin [Сlassification and review of methods for determination of the causes of well flooding]. Neftyanaya Provintsiya, No. 3(39), 2024. pp. 270-291. DOI https://doi.org/10.25689/NP.2024.270-291. EDN RIPEVZ (in Russian)