Neftyanaya Provintsiya
electronic peer-reviewed scholarly publication
Neftyanaya provintsiya No. 3(39), 2024

Features of rheological properties of polyacrylamide gel during loading and unloading

V.A. Iktisanov, N.A. Gordimanov, A.V. Iktisanov, K.G. Sahabutdinov
DOI: https://doi.org/10.25689/NP.2024.3.249-269

Abstract


Using the previously proposed rheological models, a description of the main characteristics of PAA solutions was made with a high degree of accuracy during loading and unloading. It has been shown that the description of flow curves can be performed both when setting a constant viscosity for a specific shear rate and when considering viscosity as a function of time-varying stress. In the latter case, in addition to viscoelastic properties, the thixotropic properties, i.e., the destruction and recovery of the structure, are additionally taken into account. It has been found that the coefficients of model, which are well-known rheological parameters from the Maxwell and Kelvin-Voigt equations, have a physical meaning and correlate with a high degree of accuracy among themselves and from the steady-state stress and shear rate. The commonly used terms "stress relaxation" and "shear delay" are only applicable for unloading. Under loading, both stress and shear increase. Therefore, in general, the parameters of the Maxwell and Kelvin-Voigt models have a wider range of applicability. In this case, additional (secondary) shear and shear rate occur almost immediately after loading or unloading, rather than after a certain time has elapsed, as commonly believed. An unexpected effect was observed - the secondary shear during PAA loading was maximal for small steady-state stresses and minimal for large stresses. Conversely, when unloading, the opposite trends were observed.

Key words:

viscoelastic properties, nonlinear viscous properties, thixotropy, polyacrylamide, additional shear, modulus of elasticity

References

1. M.K. Rogachev, A.N. Aleksandrov Obosnovanie kompleksnoj tekhnologii preduprezhdeniya obrazovaniya asfaltosmoloparafinovyh otlozhenij pri dobyche vysokoparafinistoj nefti pogruzhnymi elektrocentrobezhnymi nasosami iz mnogoplastovyh zalezhej [Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during production of highly paraffinic oil by electric submersible pumps from multi-layered deposits]. Zapiski Gornogo Instituta [Mining Institute Papers]. 2021, Vol. 250, pp. 596-605. DOI: 10.31897/PMI.2021.4.13. (in Russian)

2. S.S. Vyalov Reologicheskie osnovy mekhaniki gruntov [Rheological basis of rock mechanics]. Moscow,1978, 447 p. (in Russian)

3. Gorbunov A.T. Razrabotka anomalnyh neftyanyh mestorozhdenij [Development of anomalous oil fields]. Moscow, Nedra Publ., 1981, 237 p. (in Russian)

4. Dvoinikov M.V., Kuchin V.N., Mintsaev M.Sh. Razrabotka vyazkouprugih sistem i tekhnologii izolyacii vodonosnyh gorizontov s anomalnymi plastovymi davleniyami pri burenii neftegazovyh skvazhin [Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas well drilling]. Zapiski Gornogo Instituta [Mining Institute Papers]. 2021, Vol. 247, pp. 57-65. DOI: 10.31897/PMI.2021.1.7. (in Russian)

5. Diyashev R.N., Kosterin A.V., Skvortsov E.V. Filtraciya zhidkosti v deformiruemyh neftyanyh plastah [Fluid flow in deformable oil reservoirs]. Kazan,1999, 238 p. (in Russian)

6. Dobrynin V.M. Deformacii i izmeneniya fizicheskih svojstv kollektorov nefti i gaza [Deformation and changing of physical properties of oil and gas reservoirs]. Moscow, Nedra Publ., 1970, 239 p. (in Russian)

7. Zheltov Yu.P. Deformaciya gornyh porod [Deformation of rocks]. Moscow, Nedra Publ., 1966, 198 p. (in Russian)

8. Zubchaninov V.G. Osnovy teorii uprugosti i plastichnosti [Fundamentals of elasticity and plasticity theory]. Moscow, Higher School Publ., 1990, 368 p. (in Russian)

9. Iktisanov V.A. Izuchenie osobennostej relaksacionnoj filtracii zhidkosti [Studying the features of relaxation fluid flowing]. Palmarium Academic Publ., 2012, 125 p. (in Russian)

10. Iktisanov V.A. Opredelenie filtracionnyh parametrov plastov i reologicheskih svojstv dispersnyh sistem pri razrabotke neftyanyh mestorozhdenij [Determination of reservoir flow properties and rheological behavior of disperse systems during oil field development]. Moscow, VNIIOENG Publ., 2001, 212 p. (in Russian)

11. Molokovich Yu.M., A.I. Markov, A.A. Davletshin Piezometriya okrestnosti skvazhiny [Piezometry in the vicinity of the wellbore]. Theoretical background. Kazan, DAS Publ., 1990, 203 p. (in Russian)

12. Nikolaevsky V.N. Geomekhanika i flyuidodinamika [Geomechanics and fluid dynamics]. Moscow, Nedra Publ.,1996, 447 p. (in Russian)

13. Aret V.A., Nikolaev B.L., Zabrovsky G.P., Nikolaev L.K. Reologicheskie osnovy rascheta oborudovaniya proizvodstva zhirosoderzhashchih pishchevyh produktov [Rheological basics for designing the equipment for fat-containing food products]. St.-Petersburg, Saint Petersburg State University of Low-temperature and Food Technologies, 2006, 435 p. (in Russian)

14. Uriev N.B. Vysokokoncentrirovannye dispersnye sistemy [Highly concentrated disperse systems]. Moscow, Chemistry Publ., 1980, 320 p. (in Russian)

15. Fan Liu, Jin Wang, Shuchang Long, He Zhang b, Xiaohu Yao 2022 Experimental and modeling study of the viscoelastic-viscoplastic deformation behavior of amorphous polymers over a wide temperature range Mechanics of Materials 167 (2022) 104246.

16. Moschopoulos P., Varchanis S., Syrakos A., Dimakopoulos Y., Tsamopoulo J. S-PAL: A stabilized finite element formulation for computing viscoplastic flows Journal of Non-Newtonian Fluid Mechanics, Volume 309, 2022, Article 104883.

17. Tayeb, A., Arfaoui, M., Zine, A., Hamdi, A., Benabdallah, J., Ichchou, M., 2017. On the nonlinear viscoelastic behavior of rubber-like materials: constitutive description and identification. Int. J. Mech. Sci. 130, 437–447.

18. Vaiana N., Rosati L., Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses, Mech. Syst. Signal Process. 182 (2023), 109539, https://doi.org/10.1016/j.ymssp.2022.109539.

19. Xiang, G., Yin, D., Meng, R., Cao, C., 2021. Predictive model for stress relaxation behavior of glassy polymers based on variable-order fractional calculus. Polym. Adv. Technol. 32, 703–713.

20. Zografos K, Afonso AM, Poole RJ, Oliveira MSN. A viscoelastic two-phase solver using a phase-field approach. Journal of Non-Newtonian Fluid Mechanics 2020; 284:104364.

21. Gbadamosi, A., Patil, S., Kamal, M. S., Adewunmi, A. A., Yusuff, A. S., Agi, A., & Oseh, J. (2022). Application of Polymers for Chemical Enhanced Oil Recovery: A Review. In Polymers (Vol. 14, Issue 7). MDPI. DOI:10.3390/polym14071433.

22. Kamal, M. S., Sultan, A. S., Al-Mubaiyedh, U. A., & Hussein, I. A. (2015). Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems. In Polymer Reviews (Vol. 55, Issue 3, pp. 491–530). Taylor and Francis Inc. DOI:10.1080/15583724.2014.982821.

23. Tapias Hernandez, F. A., Lizcano Niño, J. C., & Zanoni Lopes Moreno., R. B. (2018). Effects of salts and temperature on rheological and viscoelastic behavior of low molecular weight HPAM solutions. Revista Fuentes El Reventón Energético, 16(1), 19–35. DOI:10.18273/revfue.v16n1-2018002.

24. Wang, D., Cheng, J., Xia, H., Li, Q., Shi, J., LTD,D.O.I.L.C.O., 2001. Viscous-Elastic Fluids Can Mobilize Oil Remaining After Water-Flood By Force Parallel To the Oil-Water Interface SPE Asia Pacific Impr. Oil Recover. Conf. [Apiorc2001] (Kuala Lumpur, Malaysia, 10/8-9/2001) Proc. https://doi.org/10.2118/72123-MS.

Authors

V.A. Iktisanov, Dr.Sc., Professor, Oil Field Development Department, «St. Petersburg Mining University of Empress Catherine II»
2, 21 Line, Vasilyevsky Island, 199106, Saint Petersburg, Russian Federation
E-mail: iktisanov_va@pers.spmi.ru

N.A. Gordimanov, Student, «St. Petersburg Mining University of Empress Catherine II»
2, 21 Line, Vasilyevsky Island, 199106, Saint Petersburg, Russian Federation
E-mail: s201335@stud.spmi.ru

A.V. Iktisanov, Student, Moscow Institute of Physics and Technology (National Research University)
9, Institutsky Lane, 141701, Dolgoprudny, Moscow Region, Russian Federation
E-mail: a.iktisanov@yandex.ru

K.G. Sahabutdinov, Lead Expert, HSE Center, TatNIPIneft Institute - PJSC TATNEFT
64, Djalil Str., 423241, Bugulma, Russian Federation
E-mail: skg@tatnipi.ru

For citation:

V.A. Iktisanov, N.A. Gordimanov, A.V. Iktisanov, K.G. Sahabutdinov Osobennosti reologicheskikh svoystv gelya poliakrilamida pri yego nagruzhenii i razgruzke [Features of rheological properties of polyacrylamide gel during loading and unloading]. Neftyanaya Provintsiya, No. 3(39), 2024. pp. 249-269. DOI https://doi.org/10.25689/NP.2024.3.249-269. EDN SGKIZL (in Russian)

© Non-governmental organization Volga-Kama Regional Division of the Russian Academy of Natural Science, 2015-2024 All the materials of the journal are available under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)