A.Yu. Yushkov, V.A. Ogai, R.N. Khakimov, N.D. Bulychev, Yu.G. Fedoreev
DOI: https://doi.org/10.25689/NP.2025.4.221-234
Abstract
Key words:
Gas field development, production strategy, gas flow rate, optimization, machine learning, hydrodynamic modeling
References
2. Pospelova T.A., Arzhilovsky A.V., Kharitonov A.N., Yushkov A.Yu., Strekalov A.V., Lopatin R.R., Loznyuk O.A., Arkhipov Yu.A. Kontseptsiya intellektualizatsii gazovykh i gazokondensatnykh promyslov [The concept of intellectualization of gas and gas-condensate fields]. Neftyanoe Khozyaystvo [Oil Industry], 2019, no. 11, pp. 58-63. (in Russian)
3. Nazarov A.V. Razvitie metodov matematicheskogo modelirovaniya dlya proektirovaniya i analiza razrabotki neftegazokondensatnykh mestorozhdeniy [Development of mathematical modeling methods for the design and analysis of oil and gas condensate field development]. Ukhta, 2012. 427 p. (in Russian)
4. Trubacheva I.A., Ermolaev A.I., Nekrasov A.A. Metod raspredeleniya zadannogo otbora gaza po skvazhinam gazokondensatnogo mestorozhdeniya s tsel'yu uvelicheniya kondensatootdachi [A method for allocating a given gas production rate among wells of a gas-condensate field to increase condensate recovery]. Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoi promyshlennosti [Automation, Telemechanization and Communication in the Oil Industry], 2018, no. 3, pp. 35-40. (in Russian)
5. Ermolaev A.I., Nekrasov A.A., Trubacheva I.A. Raspredelenie zadannogo summarnogo otbora gaza po skvazhinam gazokondensatnoi zalezhi po kriteriyu minimuma poter' plastovoi energii [Allocation of a given total gas production rate among wells of a gas-condensate pool based on the criterion of minimum reservoir energy loss]. Nauka i tekhnika v gazovoi promyshlennosti [Science and Technology in the Gas Industry], 2019, no. 2(78), pp. 57-67. (in Russian)
6. Shayakhmetov A.I. Prognozirovanie obvodneniya fonda dobyvayushchikh skvazhin na krupnykh gazovykh mestorozhdeniyakh [Forecasting water breakthrough in the stock of production wells at large gas fields]. Ufa, 2014. 144 p. (in Russian)
Authors
A.Yu. Yushkov, PhD in Technical Sciences, Senior Expert in Gas Field Development, RN-Geology Research and Development LLC
79/1, Osipenko St., Tyumen, 625002, Russian Federation
E-mail: ayyushkov@rn-gir.rosneft.ru
V.A. Ogai, Head of Research Support Group, RN-Geology Research and Development LLC
79/1, Osipenko St., Tyumen, 625002, Russian Federation
E-mail: vaogay@tnnc.rosneft.ru
R.N. Khakimov, Master's student, Tyumen Industrial University
70, Melnikayte St., Tyumen, 625027, Russian Federation
E-mail: renat.khakimov03@mail.ru
N.D. Bulychev, Master's student, Tyumen Industrial University
70, Melnikayte St., Tyumen, 625027, Russian Federation
E-mail: nikitabul2004@gmail.com
Yu.G. Fedoreev, Master's student, Gubkin Russian State University of Oil and Gas (National Research University)
65k1, Leninsky Prospekt, Moscow, 119296, Russian Federation
E-mail: fedoreev.4@gmail.com
For citation:
A.Yu. Yushkov, V.A. Ogai, R.N. Khakimov, N.D. Bulychev, Yu.G. Fedoreev Povysheniye effektivnosti razrabotki gazovykh mestorozhdeniy za schet pereraspredeleniya otborov mezhdu skvazhinami s ispol'zovaniyem mashinnogo obucheniya [Improving the efficiency of gas field development by redistributing well production using machine learning]. Neftyanaya Provintsiya, No. 4(44), 2025. pp. 221-234. DOI https://doi.org/10.25689/NP.2025.4.221-234. EDN EYXTCV (in Russian)