T.A. Abramov, A.Sh. Akkerman, A.N. Kiselyov
DOI: https://doi.org/10.25689/NP.2025.3.206-223
Abstract
Key words:
well testing, pressure buildup curve, hydraulic fracturing, skin effect
References
2. Medhat M. Kamal. Transient Well Testing. Richardson: Society of Petroleum Engineers. 2009. – 849 p. (in English)
3. Bourdet D. Well test analysis: the use of advanced interpretation models. – Amsterdam: Elsevier Science B.V. – 2002. – 426 p. (in English)
4. Abramov T.A., Gordeev A.O., Tulkova A.I., Yagudin R.A., Korolev A.Yu. Analysis of characteristic features of well tests results of the berezovskaya suite at the Y field // Scientific Journal of Russian Gas Society. 2019. P. 18-25 (in Russian)
5. Abramov T.A., Gordeev A.O., Loznyuk O.A., Tyulkova A.I., Afonin D.G. Analysis of pressure transient test results for beryozovskaya suite // Neftyanaya Provintsiya. 2019. № 4. P. 234-247 DOI:10.25689/NP.2019.4.234-247 (in Russian)
6. D.A. Martyushev, I.N. Ponomareva, E.V. Filippov, Yuwei Li. Formation of hydraulic fracturing cracks in complicated carbonate reservoirs with natural fracturing // Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2022. V. 333. 1. 85–94 (in Russian)
7. Kuchuk F. Transient Test Interpretation for Continuously and Discretely Fractured Reservoirs // SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-10 October 2012. – № SPE-158096. – DOI: https://doi.org/10.13140/RG.2.1.2306.3760 (in English)
8. Martyushev D.A., Ponomareva I.N., Filippov E.V. Studying the direction of hydraulic fracture in carbonate reservoirs: Using machine learning to determine reservoir pressure // Petroleum Research. – 2023. – №8. – P. 226-233. DOI: https://doi.org/10.1016/j.ptlrs.2022.06.003 (in English)
9. Zakharov L.А., Martyushev D.А., Ponomareva I.N. Predicting dynamic formation pressure using artificial intelligence methods // Journal of Mining Institute. – 2022. – Vol. 253. – p. 23-32. DOI: 10.31897/PMI.2022.11 (in Russian)
10. Martyushev D.А., Ponomareva I.N., Zakharov L.А., Shadrov L.A. Application of machine learning for forecasting formation pressure in oil field development // Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. – 2021. – V. 332. 10. – P. 140–149. https://doi.org/10.18799/24131830/2021/10/3401 (in Russian)
11. M. Ekonomides, K. Nolte. Povyshenie produktivnosti neftegazovyh kollektorov. – M.: – Izhevsk: NIC «Regulyarnaya i haoticheskaya dinamika» [Regular and chaotic dynamics], Izhevskij institut komp'yuternyh issledovanij, 2011. – 1223 p. (in Russian)
Authors
T.A. Abramov, Lead specialist, Tyumen petroleum research center LLC
42, Maksima Gorkogo Str., Tyumen, 625000, Russian Federation
E-mail: taabramov@tnnc.rosneft.ru
A.Sh. Akkerman, Lead specialist, Tyumen petroleum research center LLC
42, Maksima Gorkogo Str., Tyumen, 625000, Russian Federation
E-mail: ASh_Akkerman@tnnc.rosneft.ru
A.N. Kiselyov, Reservoir Manager, Tyumen petroleum research center LLC
42, Maksima Gorkogo Str., Tyumen, 625000, Russian Federation
E-mail: ankiselyov@tnnc.rosneft.ru
For citation:
T.A. Abramov, A.Sh. Akkerman, A.N. Kiselyov Analiz prichin otsutstviya diagnosticheskih priznakov treshchiny gidrorazryva na kvd [Well Testing: Causes of Missing Hydraulic Fractures Diagnostic Signatures on Pressure Buildup Curves]. Neftyanaya Provintsiya, No. 3(43), 2025. pp. 206-223. DOI https://doi.org/10.25689/NP.2025.3.206-223. EDN YJPMWU (in Russian)