Neftyanaya Provintsiya
electronic peer-reviewed scholarly publication
Neftyanaya provintsiya No. 3(43), 2025

Experience of 5D regularization application in azimuthal processing of seismic data for azimuthal inversion AVAz testing for estimation of fractural reservoir spread areas in Bazen-abalaksky deposits interval

A.P. Pravdukhin, A.V. Shakhov
DOI: https://doi.org/10.25689/NP.2025.3.11-28

Abstract


Many seismic data processing algorithms have strict requirements for input data spatial distribution. The most known example of such kind of requirements is regular space distribution of input data for migration. To adjust data in term of space distribution for specific processing or interpretation procedure, different regularization-interpolation algorithms are used. There are two main classes of 3D seismic data regularization algorithms, traditional 3D approaches and multidimensional algorithms, commonly named as “5D regularization”.In this paper we, have considered the case of 5D regularization application in sequence of data preparation for azimuthal seismic inversion. We show that, to prepare input data for azimuthal seismic inversion, different 5D regularization parameters definition could be, in this paper we consider two possible options. We propose 5D regularization parameters and dimension definitions, that allow prepare data, better to meet requirements of azimuthal inversion. We show results of azimuthal inversion and exhibition HTI anisotropy estimation.

Key words:

5D regularization, multidimensional Fourier reconstruction, azimuthal processing, azimuthal seismic inversion AVAz, P-impedance, S-impedance, HTI-anisotropy, “fast” velocity, “slow” velocity, compressional wave, shear wave

References

1. Daniel Trad Wide Azimuth Interpolation. 68th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2006 (in English)

2. Daniel Trad (2008) Five-dimensional seismic data interpolation, SEG Technical Program Expanded Abstracts: 978-982. (in English)

3. Jon Downton, Lee Hunt, Daniel Trad, Scott Reynolds, and Scott Hadley 5D interpolation to improve AVO and AVAz: a quantitative case history. Canadian journal of exploration geophysics, vol. 37, No. 1 (June 2012), p. 8-17 (in English)

4. Orekhov A.N., Amani M.M. Vozmozhnosti geofizicheskih metodov dlya prognozirovaniya treshchinovatosti kollektorov [Potential of geophysical techniques for predicting reservoir-scale fracturing]. Bulletin of Tomsk Polytechnic University. Georesources Engineering. 2019, vol. 330, No.6, pp.198-209. DOI 10.18799/24131830/2019/6/2140. – EDN JLXTAP. (in Russian)

5. Grinevsky A.S. Metody analiza sejsmicheskih dannyh dlya izucheniya anizotropii gornyh porod, vyzvannoj treshchinovatost'yu [Seismic data analysis to study rock anisotropy associated with rock fracturing]. PhD thesis: 25.00.10. 2021, 161 p. EDN HFYHSN. (in Russian)

6. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part II: Fractured models with orthorhombic symmetry. Geophysics, 2000, vol. 65, No. 6, pp. 1803-1817. DOI 10.1190/1.1444864. – EDN LGCHML. (in Russian)

Authors

A.P. Pravdukhin, expert, Tyumen Petroleum Research Center LLC, “NC Rosneft”
79/1, Osipenko Str., Tyumen, 625000, Russian Federation
E-mail: appravdukhin@tnnc.rosneft.ru

A.V. Shakhov, head of sector, Tyumen Petroleum Research Center LLC, “NC Rosneft”
79/1, Osipenko Str., Tyumen, 625000, Russian Federation
E-mail: avshakhov@tnnc.rosneft.ru

For citation:

A.P. Pravdukhin, A.V. Shakhov Opit primenenia regularizatsii 5D v azimutalnoy obrabotke seismotazvedochnih dannih dlia oprobovania tehnologii azimutalnoy inversii AVAz s tseliu otsenki vozmoznosti videlenia zon rasprostranenia treshinovatogo kollectora v intrrvale bazenovsko-abalakskogo kompleksa [Experience of 5D regularization application in azimuthal processing of seismic data for azimuthal inversion AVAz testing for estimation of fractural reservoir spread areas in Bazen-abalaksky deposits interval]. Neftyanaya Provintsiya, No. 3(43), 2025. pp. 11-28. DOI https://doi.org/10.25689/NP.2025.3.11-28. EDN BNPGJK (in Russian)

© Non-governmental organization Volga-Kama Regional Division of the Russian Academy of Natural Science, 2015-2025 All the materials of the journal are available under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)