Neftyanaya Provintsiya
electronic peer-reviewed scholarly publication
Neftyanaya provintsiya No. 4(40), 2024

The use of Kolmogorov neural networks in prediction of reservoir properties on the example of deposits of Western Siberia

G.V. Khusainov, A.S. Kovalkova
DOI: https://doi.org/10.25689/NP.2024.4.104-120

Abstract


The applicability of using machine learning algorithms to solve problems in the field of seismic interpretation is an urgent issue. This article presents a comparison of the results of testing machine learning algorithms integrated into IP-Seismic software. The obtained results can be used to build trends in the modeling process, evaluate various scenarios and analyze the spread of initial geological reserves.

Key words:

neural networks, seismic exploration, prediction, reservoir property, geological model

References

1. Kobrunov A., Priezzhev I. Hybrid combination genetic algorithm and controlled gradient method to train a neural network. Geophysics, 2016. Vol. 81, No. 4, pp. 1–9. (in Russian)

2. Priezzhev I.I. Nejronnye seti novogo pokoleniya na osnove teoremy Kolmogorova i ih primenenie dlya prognozno-inversionnyh postroenij [Next-generation neural networks based on Kolmogorov theorem and their application for predictive inverse modeling]. GeoEurasia, Moscow, February 3-5, 2020 (in Russian)

3. Priezzhev I., Shmaryan L., Bejarano G. Non-linear multi trace seismic inversion using neural network and genetic algorithm. Genetic Inversion. Annual Meeting St Petersburg, EAGE, Extended Abstracts. 2008

4. Gaifullina E.F., Reshetnikov A.A., Shvydkoi V.S., Dorokhov A.R. Stohasticheskaya inversiya dlya vklyucheniya sejsmicheskih dannyh v trekhmernoe modelirovanie [Stochastic inversion for including seismic data in 3D modeling]. Ekspoziciya Neft Gaz [Oil and Gas Exhibit]. 2022, No. 8, pp. 16–21. DOI: 10.24412/2076-6785-2022-8-16-21 (in Russian)

5. Priezzhev I.I. Primer ispolzovaniya nejronnyh setej Kolmogorova pri prognozirovanii svojstv plasta Pokurskoj svity v Zapadnoj Sibiri [The example of neural Kolmogorov networks in reservoir properties forecast within West Siberia Pokur suite]. Geofizika [Geophysics]. 2022, No.1, pp. 58-63. URL: https://rucont.ru/efd/873051 (in Russian)

6. Priezzhev I.I., Akhmetzyanov R.A. Intellektualnyj analiz geologo-geofizicheskih dannyh (obzor primenyaemyh algoritmov) [Intellectual analysis of geological and geophysical data (overview of the algorithm used)]. Geofizika [Geophysics]. 2023, No. 1, pp. 2-11. DOI: 10.34926/geo.2023.90.81.001. – EDN JSGWUX. (in Russian)

7. Seletkov I.A., Belyshev D.A., Priezzhev I.I. Opyt primeneniya mashinnogo obucheniya pri prognoze geologicheskogo razreza po sejsmicheskim dannym [Experience in applying machine learning to geological section prediction from seismic data]. Geofizika [Geophysics]. 2021, No. 5, pp. 12-18. EDN HOZCDW (in Russian)

8. Muromtsev V.S. Elektrometricheskaya geologiya peschanyh tel – litologicheskih lovushek nefti i gaza [Electrometric geology of sand bodies as oil and gas lithological traps]. Leningrad: Nedra Publ., 1984, 260 p. (in Russian)

Authors

G.V. Khusainov, Leading Specialist, Tyumen Oil Research Center LLC
79/1, Osipenko Str., 625000, Tyumen, Russian Federation
E-mail: GV_Khusainov2@tnnc.rosneft.ru

A.S. Kovalkova, Leading Specialist, Tyumen Oil Research Center LLC
79/1, Osipenko Str., 625000, Tyumen, Russian Federation
E-mail: AS_Kovalkova@tnnc.rosneft.ru

For citation:

G.V. Khusainov, A.S. Kovalkova Ispol'zovaniye neyronnykh setey Kolmogorova pri prognozirovanii kollektorskikh svoystv na primere mestorozhdeniy Zapadnoy Sibiri [The use of Kolmogorov neural networks in prediction of reservoir properties on the example of deposits of Western Siberia]. Neftyanaya Provintsiya, No. 4(40), 2024. pp. 104-120. DOI https://doi.org/10.25689/NP.2024.4.104-120. EDN PTYGQQ (in Russian)

© Non-governmental organization Volga-Kama Regional Division of the Russian Academy of Natural Science, 2015-2024 All the materials of the journal are available under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)