MODELING OF SATURATION BEHAVIOR BASED ON SEISMIC FORECAST OF PETROPHYSICAL PARAMETERS (on the example of Achimov deposits of a field in YANAO)
Kalashnikova M.P., Yanevits R.B., Natchuk N.Yu., Sitdikov R.R.
DOI https://doi.org/10.25689/NP.2019.3.115-128
Abstract
The paper considers a problem of water saturation determination in the interwell space based on comprehensive analysis of well logging and seismic data, as well as identification of reservoirs with high potential of water breakthrough. The authors analyze relations between elastic parameters and petrophysical properties and saturation, and present procedure for generation of a resistivity cube using a neural network algorithm. Quality assessment has been performed, as well as analysis of production operations effect on input data used for resistivity cube forecasting. The paper presents actual drilling data confirming water saturation forecast made from seismic data. It also demonstrates how the results obtained affect the final geologic model and reserves estimation.
References
2. R.B. Yanevits, O.A. Sokolovskaya, L.V. Lapina, N.V. Kholmanskikh Ispol'zovanie nejrosetevyh algoritmov pri prognoze petrofizicheskih svojstv tonkosloistogo razreza po dannym sejsmorazvedki i GIS (na primere achimovskih otlozhenij mestorozhdeniya v YANAO) [Use of neural network algorithms to forecast petrophysical properties of thinlayer structures from seismic survey data and well logging data]. Geologiya, geofizika i razrabotka neftyanyh i gazovyh mestorozhdenij [Oil and gas field geology, geophysics and development], No.7, 2017 (in Russian)
3. Masters T. Advanced algorithms for neural networks.- John Wiley & Sons, Inc. - 1995.
4. Specht Donald. A general regression neural network. IEEE Transactions on Neural Networks. - № 2(6). - 1991. - P. 568-576.
5. Specht Donald. Probabilistic neural networks. Neural Networks. № 3. 1990. P.109-118.
6. Hampson D.P., J.S. Schuelke, and J.A. Quirein, 2011, Use of multiattribute transforms to predict log properties from seismic data. Geophysics, Vol. 66, No. 1, p. 220-239.
Authors
Yanevits R.B., LLC «Tyumen Petroleum Research Center», Tyumen, Russian Federation E-mail: rbyanevits@tnnc.rosneft.ru
Natchuk N.Yu, LLC «Tyumen Petroleum Research Center», Tyumen, Russian Federation E-mail: nynatchuk@tnnc.rosneft.ru
Sitdikov R.R., AO Rospan International, Novy Urengoy, Russian Federation E-mail: rrsitdikov2@rspn.rosneft.ru
For citation: