Neftyanaya Provintsiya
electronic peer-reviewed scholarly publication
Neftyanaya provintsiya No.3(15),2018

ESTIMATION OF RESERVES AND RESOURCES USING MONTE-CARLO METHOD IN UNCERTAINTY MODULE OF ROXAR RMS SOFTWARE

Khisamov R.S., Safarov А.F., Kalimullin А.М., Dryagalkina А.А.
DOI https://doi.org/10.25689/NP.2018.3.1-17

Abstract

Today, a large variety of petroleum reserves and resources classifications exist in the oil and gas industry, and each of them has its benefits and drawbacks. This paper presents analysis, comparison, and correlation of the results obtained from otherwise different methods of hydrocarbon reserves and resources estimation. The objective of this paper is to discuss details of reserves estimation by different methods and examine the possibility and practicability of application of probabilistic approach to reserves estimate. Oil reserves have been estimated by volumetric method based on the geological model generated by IRAP RMS software. Variation of volumetric parameters was assigned in Uncertainty module, which makes it possible to build a geologic model with equally probable implementations with limited data on key reservoir characteristics. In estimating the uncertainty, variations were assigned for the following parameters: oil-water level, correction factor, porosity and water saturation. After calculations and search of possible implementations, the software generated the result in three parameters: P10 (possible), P50 (probable), and P90 (proved). To compare the results of reserves estimation, generated net pay maps were used that allow analyzing distribution of in-situ reserves. The research suggests that input variables and different methods of 3D geological modelling affect the results in distribution of reservoir properties and key parameters for volumetric estimation of reserves. Multi-variant distribution of volumetric parameters in the geological environment provides consistent estimates of reserves (resources).

    Key words:

    risk, probabilistic-statistical estimate, Monte Carlo method, Classification System for Oil and Combustible Gas Reserves and Resources (2013), Petroleum Resources Management System (SPE-PRMS), comparison of Russian and international reserves estimation methods

    References


    1. Найт Ф.Х. Риск, неопределенность и прибыль : пер. с англ. М.Я. Каждана, науч. ред. В.Г. Гребенников. – М. : Дело, 2003. – 359 с.

    2. Kelliher C.F., Mahoney L.S. Using Monte Carlo simulation to improve long-term investment decision // The Appraisal Journal. – 2000. – № 1. – P. 44-56.

    3. Хисамов Р.С., Сафаров А.Ф., Калимуллин А.М. (2017). Применение литологофациального анализа при построении геологической модели бобриковского горизонта Сиреневского месторождения. Экспозиция нефть газ. 6(59), с. 11-15.

    4. Закревский К.Е. геологическое 3D моделирование. -131с.

    5. Система управления ресурсами и запасами жидких, газообразных и твердых углеводородов / пер. с англ. Ю.Е. Агеева ; ред. Б.Н. Аронштейн ; ФГУ «Государственная комиссия по запасам РФ». – М., 2007. – 63 с.

    Authors


    Khisamov R.S., Dr.Sc., Chief Geologist – Deputy General Director, PJSC TATNEFT, Almetyevsk, Republic of Tatarstan, Russia
    E-mail: khisamov@tatneft.ru

    Safarov A.F., Head of Laboratory, Geological Prospecting and Exploration Department, TatNIPIneft Institute – PJSC TATNEFT, Bugulma, Republic of Tatarstan, Russia
    E-mail: safarov@tatnipi.ru

    Kalimullin A.M., Engineer, Geological Prospecting and Exploration Department, TatNIPIneft Institute – PJSC TATNEFT, Bugulma, Republic of Tatarstan, Russia
    E-mail: kalimullinam@tatnipi.ru

    Dryagalkina A.A., Engineer, Geological Prospecting and Exploration Department, TatNIPIneft Institute – PJSC TATNEFT, Bugulma, Republic of Tatarstan, Russia
    E-mail: dryagaikinaaa@tatnipi.ru

    For citation:

    R.S. Khisamov, А.F. Safarov, А.М. Kalimullin, А.А. Dryagalkina Modelirovanie podschetnogo ob#ekta metodom monte-karlo v programmnom obespechenii roxar rms uncertainty [Estimation of reserves and resources using monte-carlo method in uncertainty module of roxar rms software]. Neftyanaya Provintsiya, No. 3(15), 2018. pp. 1-17. https://doi.org/10.25689/NP.2018.3.1-17 (in Russian)

    © Non-governmental organization Volga-Kama Regional Division of the Russian Academy of Natural Science, 2015-2022 All the materials of the journal are available under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)